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1. To describe the structure and different plastic molding processes, as well as the 
fracture of real solids, there occurs the necessity to introduce a more general than usual 
(translational) dislocation of the type of the Somigliani dislocation [I] into the consider- 
ations. Questions of constructing the kinetics of such defects are indeed the subject of 
investigations in this paper. Some of these questions have already been examined earlier 
[2]. Here an approach independent of [2] is developed, in which Somigliani dislocations 
are introduced as a natural extension of the ordinary dislocations. The advantage of this 
approach is the possibility of using the well-developed apparatus of continual theory of 
ordinary defects (dislocations and disclinations). By using the results of [3, 4], an ex- 
pression is successfully written here for the dynamic elastic fields of Somigliani disloca- 
tions and a closed system of kinetic equations is obtained. 

2. A Somigliani dislocation is an extension of the Volterra dislocation [I, 5] and is 
usually determined [2] as a surface S on which the total displacement in an elastic body u~ 
undergoes a jump [u T] that changes arbitrarily along S 

= -  B,, 

where B l is the Burgers vector of Somigliani dislocation. The jump in the displacement is 
defined as the jump in the displacement upon going through the surface S in the direction 
of the normal to the surface n k. Here the surface S can depend on the time t (S = S(t)); how- 
ever, for simplicity in the writing, we will sometimes omit the symbol for the argument t. 

Another possibility also exists for determining the Somigliani dislocation, namely, in 
terms of the basis plastic fields as is done in the continual theory of Volterra dislocations 
[3, 5]. In the case of ordinary Volterra translational dislocations, it is necessary to as- 
sign basis plastic distortion B~l and velocity v~ fields of the form 

~,,~ (r, t) = - -  .1 6(R) bzdSh; ( 2 . 1 )  
S 

z:~ (r, t) = ~ 6 (R) bzv k (r ' ,  t) dSh,  ( 2.  2) 

where 6(R) is the three-dimensional Dirac delta function (R = r -- r'), r, r' are the radius 
vectors of the points of observation and integration, vk(r, t) is the velocity of surface 
S(t) motion, and b I is the constant Burgers vector of the dislocations. We shall consider 
the Somigliani dislocation to be an extension of the translational Volterra dislocations, 
and we represent the basis fields by expressions of the type (2.1) and (2.2) in which in- 
stead of the constant Burgers vector b I there will now be Bl(r , t), the Burgers vector 
which changes along S(t) 

~ (r, t) = - -  ,I 6 (R) Bz (r', t) dSk; (2.3) 
S 

t,~ (r, t) = .I ~ (R) B l (r ' ,  t) v h (r ' ,  t) dS  u. ( 2 . 4 )  
" S  

In order to set off the accepted viewpoint better, we examine the particular case of Somig- 
liani dislocations when the edges of the surface S(t) are rigidly rotated a certain angle 
~q with respect to each other, where 

= - B ,  = - - ( 2 . 5 )  

Ufa. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. I, pp. 
135-140, January-February, 1984. Original article submitted November 11, 1982. 

0021-8944/84/2501-0121508.50 �9 1984 Plenum Publishing Corporation 121 



Here E/q r is the unit antisymmetric tensor, xr, x$ are Cartesian coordinates of the point of 
observation and a point of the axis of rotation. Such a nature of the displacement jump cor- 
responds to disclination [5]. In continual theory, the basis plastic disclination fields 
are given by four quantities [3]: the plastic strain tensor el1 , the plastic bending-twisting 

tensor z~, the velocity vector of the plastic displacement~v~, and the rotation w~. This 

is related to the fact that the plastic distortion tensor B{1 is considered unknown in the 
case of disclination. Opposing this we here consider (2.3) known for a Somigliani disloca- 
tion with a displacement jump (2.5). Therefore, only the so-called dislocation model of 
disclination [5] results as a particular case from the theory of Somigliani dislocations. 

If the sense of the plastic distortions (2.3) is clear, then the sense of the plastic 
velocities (2.4) requires disclosure. Let us consider the plastic displacement field u~(r, 
t) of the singular form 

uf (r, t) = .[ 6(R) Bt (r~)dV, (2.6)  
v 

where V is the volume bounded by a closed moving surface S(t) while the vector B1 is inde- 
pendent of the time. As before, we determine that the dislocation density tensor ~pl defined 
by the relationship [5] 

--E P 
~vz = ~m~hz,m, (2.7) 

equals zero (the subscript after the comma denotes differentiation with respect to the cor- 
responding Cartesian coordinate). Indeed, we obtain from (2.6) for the plastic distorsion 
tensor B~l 

~ = ut,kP = ~ Bl~,k (R) dV.  ( 2 . 8 )  
v 

Substituting (2.8) into (2.7), we find 

apt = - -  e~nm S B~8,hm (R) dV = O. ( 2 . 9 )  
v 

Furthermore, we have for the velocity of the plastic displacements v~ (the dot above denotes 
differentiation with respect to time) 

v~------- ~t~= r[ B,6(R)vRdSk, , (2.10) 
s 

As is seen from (2.10), the velocity of plastic displacement differs from zero for the field 
(2.6) only on the surface S(t) and has the form (2.4). Utilizing the ordinary relationship 
for the dislocation flux density Jk/ [6] (this expression differs by the sign in [6]) 

Jht = ~, (2.11) 

we obtain (the subscript with the prime after the cormna denotes differentiation with respect 
to the variable of integration) 

Jhz = - - S  B~,(R)vidSI. (2.12) 
8 

As is seen from (2.12), the dislocation flux density tensor Jk/ for the field (2.6) differs 
from zero and is concentrated on the surface S(t). Since ~pl = O, there are no elastic 
fields in statics. In dynamics, although Jk/ ~ 0 it can also be assumed (postulated) that 
there are no elastic fields (see [3]). Therefore, the plastic displacement velocity v~ (2.4) 
can be interpreted as the velocity of plastic displacement associated with a plastic field of 
displacements of the form (2.6) in a certain body volume adjacent to S(t). As in [3], we 
here postulate that the plastic velocity field does not evoke elastic stress fields. Giving 
the Somigliani dislocations by two basis fields (2.3) and (2.4) mean~ in this connection 
that an additional distortion of the medium whose velocity is v~, k i= imposed on the plastic 
distortion of the defect (2.3).: 

Now the fundamental kinematic relationships can be written. The complete dislocation 
density tensor ~pl for the Somigliani dislocation (more accurately, for a medium with a Somig -~ 
liani dislocation) will be comprised of components related to the distortions of the defect 
(2.3) itself and of the medium. As has been shown above in (2.9), the latter component equals 
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P 
zero; consequently, apl is determined by the relationship (2.7) in which Bkl is the plastic 
distortion of the defect (2.3). Substituting (2.3) into (2.7), we obtain for the dislocation 
density tensor apl of the Somigliani dislocation 

apt = ~ vpBz 5 (R) dL + ,f 8pmhBl' m'~ (R) dSh,' (2.13)  
L S 

where L ( t )  i s  a c losed contour  bounding S ( t ) ,  and Tp i s  the u n i t  v e c t o r  tangent  to the con- 
t ou r  L whose d i r e c t i o n  i s  i n  agreement w i t h  the d i r e c t i o n  of  the normal to the su r face  S. 
Here and henceforth, B/,m the gradient of the field B 1 is in the formulas. Since the field 
B 1 is given only on the surface S(t), a certain explanation of this concept is required. 
Points on the surface S(t) can be made individual by two parameters which we denote by ~, q. 
We then have at each point M of the surface S 

Bz = Bl(~,  ~ ,  t); (2.14) 

rm = r~(~ ,  ~ ,  t), (2.15) 

where r M is the radius-vector of the point M. We shall assume that the dependence (2.15) 
is mutually one-to-one, at least for sufficiently small time intervals At (the case of a 
fixed surface requires special consideration). Then eliminating ~, q, t from (2.14) by using 
(2.15), we obtain 

B z = B / ( r ~ ) .  (2.16) 

The f i e l d  ( 2 . 1 6 )  i s  a f u n c t i o n  of  t h e  s p a c e  c o o r d i n a t e s ,  and we w i l l  u n d e r s t a n d  B/ ,  m to  be  
the gradient of the field (2.15). If it is convenient to use the parametric notation (2.14) 
for the field B 1 for some reason, then the gradient B 1 will be determined by the expression 
(in line notations) 

n { 0B V.VsB) ' VB = V s B  + ~ ~-b-T-- - -  (2 .17)  

where V, V S are the spatial and surface nabla operators. 

The complete dislocation flux density tensor Jk/ will also consist of two components. 
According to (2.11) the first is determined by the plastic distorsion velocity of the defect 
~l'p_ The second occurs from the imposition of the field (2.4) with reverse sign and equal 
to v/, k. We hence have for the dislocation flux density tensor 

Jkz=~-- P Vl,h. (2.18) 

Substituting (2.3) and (2.4) into (2.18), we find 

Jht = --  S Bz,h'6 (n) DdSj + [ 6 (n) B,eumhT~vmdL. ( 2 . 1 9 )  
S L 

Formulas (2.13)-(2.19) are valid only in the case when the velocity of Somigliani dislocation 
motion v i does not vanish anywhere on S. In particular, as is seen from (2.17), VB has a 
singularity as v § 0. However, if we substitute (2.17) into (2.13) and (2.19), then the 
singularity vanishes and formulas are obtained that are even valid for v = 0: 

=~z = ~ T~Bz6 (R) dL + ~ 8~m~ (VsB)zm 6 (R) dSh; (2.20) 
L S 

L S S 

where (VsB)m/ are the surface gradient components. Furthermore, an expression for the plastic 

&kl 
p 

strain rate tensor = J(k/), the plastic rotation rate tensor w~ l~ = J[k/], and the rate 

of production of excess volume V = Jkk can be obtained. The fundamental kinematic relation- 
ships for the Somigliani dislocations are thereby exhausted. Formulas (2.20) and (2.21) ex- 
press the characteristics of the continual theory of defects (dislocation density and flux) 
in terms of the field of displacement jumps B 1 on the surface S(t). 

3. To formulate the system of equations describing the time evolution of the Somigliani 
dislocations, it is furthermore necessary to write equations for the dynamic self-consistent 
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fields of elastic stresses, generalized forces, and velocities as well as the balance equa- 
tions for the defect distribution functions. 

As soon as the expressions for the dislocation densities and fluxes (2.20) and (2.21) 
are known, the elastic distortions can be calculated by the general formulas of continual 
theory [4]: 

~mn (r, t) = S [epm~cijhzGjn,~ (R, T) ~pl (r', t') - -  p~tn (R, T) Jmz (r', t')] dr'dt', ( 3 . 1 )  

where T = t -- t'; cijkl is the tensor of elastic moduli; Gin is the dynamic Green's func- 
tion; p is the mass density. The elastic stresses on (he body oij, induced by theSomig- 
liani dislocation, are found by substituting the elastic distortions into Hooke's law: 

~ij = ciim~mn* (3.2) 

Let us consider the question of the forces acting on a Somigliani dislocation. In the 
general case the motion of a Somigliani dislocation includes both a change in the configura- 
tion and position of the surface S(t) and a change in the field B 1. To be able to introduce 
the defect distribution function and write a balance equation for it, we are obliged to limit 
the number of allowable degrees of freedom of the Somigliani dislocations. This can be done 
by assuming that the configuration, location, and field B 1 of the Somigliani dislocations in 
the ensemble under consideration are determined completely by the assignment of a finite num- 
ber of parameters (generalized coordinates) qk (k = I, 2,...,N + 3), where the last three 
generalized coordinates correspond to the Cartesian coordinates of the radius-vector r of the 
defect location. Such a method was utilized earlier in describing microcracks as a modifica- 
tion of a Somigliani dislocation in [7]. Moreover, we will consider only conservative motion 
not associated with the formation of excess volume since otherwise it is necessary to in- 
clude point defects responsible for mass transfer. 

The potential function ~ = H(ql, q2,...,qN+3) for the elastic forces has the form 

H = W - - A ,  
where W is the intrinsic elastic energy of the defect, and A is the work of all the external 
(with respect to the defect under consideration) forces on the plastic displacements. The 
expression 

dA = J a o - - ~ q  dqhdV; 
+ 

can be w r i t t e n  f o r  t h e  d i f f e r e n t i a l  o f  t h e  work dA, where o~j i s  t h e  t o t a l  s t r e s s  in  the  body,  

and ~ is the total plastic distorsion of the body with the defect, and integration is over 
the volume included in the defect itself. We hence obtain for the generalized force F k 

f og+P Fk ~H _ oW + ~• '-t---LdV. (3.3) 
Ogh Oqk z.~ aq k v 

The first term in the right side of (3.3) is the self-action force F~, while the second is 
e the external force F k. It is clear from the method of introduction of the generalized co- 

ordinates that the vectors 3Bi/3t and v m introduced in (2.21) are linear functions of the 
. . . �9 + �9 , . . 

generallzed velocltles qk = dqk/dt- Consequently Jij = Ji~kqk is also a llnear functlon of 
�9 . . ~ + , o q . , 

qk with coefflclents Ji~k . By using the rule of dlfferentlatlon wlth respect to the param- 
eter t, the partial derivative 3BT$/3qk can be replaced by the quantity 3Ji~/3qu = JT-~. lj J ~ l j ~  
Then the final expression for the generalized force becomes 

++ F k Ff  + .[ aijdij~dV. ( 3 . 4 )  
V 

As an illustration, let us consider the motion of an element TpdL of translational dis- 
location which is described by three generalized coordinates Xk, the Cartesian coordinates 
of the location radius-vector of the dislocation. Taking into account that Xk = Vk, B1 = 

e EpmkblO~kZpdL that agrees with b I = const we find the expression for the external force F m = 
the known Peach--Keler formula [6]. 

To describe the behavior of the ensemble of Somigliani dislocations, we introduce the 
distribution function f(q~,q2..., qN); r, t) such that the number of Somigliani disloca- 
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tions with generalized coordinates between qk and qk + dqk in the volume element dr is 
equal to f(ql,q2,..., qN; r, t)dq1~..., dqndr. We write the balance equation for f 

a/ a �9 
at + ~(qh/) = ~, (3.5) 

where qk is the velocity of defect motion in (N + 3)-space, and I is the collision integral 
that takes account of the generation-annihilation process and other discrete defect transfor- 
mations. It is assumed that the generalized velocities qk are functions of the generalized 
forces 

q~ = qok(F1' F2 . . . . .  FN+3)' (3.6) 

where qk should be determined from microscopic theory or from experiment. Underlying the 
assumption (3.6) is that the defects move sufficiently slowly and homogeneously, and the 
forces of inertia are taken into account well by the mean dynamical stress fields o +. 

t + . lj [8]. 
The generalized forces F k of (3.4) are determined by he total stresses oij whlch are com- 
prised of the external applied o~ and the internal oij stresses: 

o+ 0 

For the self-consistency of the problem there remains to express the internal stresses 
oij in terms of the Somigliani dislocation distribution function. To this end, by using an 
averaging procedure we introduce the mean plastic distorsion ~P1 and velocity ~ fields: 

~ = ~ 13~5' (q~ . . . . .  q~)/(q, . . . . .  q~,~; r, t ) @ ~ . . .  @N; (3 .8 )  

v~ = f u[~'(ql . . . . .  qN) / ( q l  . . . . .  qn~; r, t ) dq ,  . , .  cLTN, (3 .9 )  

Pl P11 where Bkl , v are the integral characteristics of the defects. 

S S 

The e l a s t i c  d i s t o r s i o n s  ~mn, c a u s e d  by the  p ! a s t i c  f i e l d s  (3 .8 )  and ( 3 . 9 ) ,  a re  found from 
(3 .1 )  in  which a and Jml shou ld  be e x p r e s s e d  i n  terms of  ~P and v P by u s i n g  the  r e l a t i o n -  . pl kl  l , 
s h i p s  ( 2 . 7 )  and ( 2 . 1 8 ) .  Then, by s u b s t i t u t i n g  the  o b t a i n e d  v a l u e s  of  Bmn in  the  Hooke s law 
(3.2), we find the desired stresses oij. 

Therefore, the balance equation (3.5), the motion laws (3.6), and the formulas (3.4), 
(3.7)-(3.9), (3.1), (2.7), and (2.18) to find the generalized forces comprise a closed system 
of equations describing the kinetics of an ensemble of Somigliani dislocations. 
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